
Shrink-to-fit Sizing for CSS 3 Regions

Rossen Atanassov, Microsoft Corporation, August 1 1, 2011

CSS3 Regions Processing Model
Before we can decide what the proper model for handling shrink-to-fit sizing of CSS 3 regions is, we have

to define its “processing model” and our assumptions about it. In particular, we must be clear on which

layout in the hierarchy of contents is responsible for sizing, positioning and structure of layout.

Terminology

Master layout

Layout of top level HML document containing CSS3 regions.

Nested layout

HTML content redirected from its original layout into a region of the master layout.

Layout structure

The number of layout boxes created for a given content (HTML) element. Usually 1:1 but in the case of

pagination for example, one content element can be represented by many layout boxes.

Fragment

One of many layout boxes representing a single content element. The simplest example of

fragmentation is pagination, where many layout boxes are created for the same content element due to

layout space constraints.

For the purposes of this document we assume that content element to layout box ratio is 1:N

The following three sections describe the dependencies of master and nested layouts in the processing

model of regions. Each section is a subset of the following one, thus the last one describes the

complete model.

Model Constraint 1 – Master layout independence
With this constraint on the processing model all decisions of sizing, positioning and layout structure are

sole responsibilities of the master layout. IFrame in the current HTML/CSS is an example of this model.

Here, the master layout does not have any control over what parts of the nested layout go into any

particular fragment. Layout boxes for regions are created, sized and positioned by the master layout and

then the nested layout flows into these empty layout boxes. The nested layout is dependent on the

sizing of regions in the master layout.

In summary, the nested layout depends on the master layout for providing the size of its initial container

block. The master layout does not depend on the content or layout of the nested content.

The current draft of CSS3 Regions assumes this model, thus, the used width of a shrink-to-fit region is 0

(different than the 300px default for IFRAME).

Features

 Performance - complete separation of master and nested layouts allows asynchronous

processing of layout

 Security – Over the years this model has proven to be secured (ex. iframe)

Limitations

 Shrink-to-fit for regions is not an option.

 Empty or overflow regions are not controllable by the master layout simply because the regions

layout structure is predefined by the content of the master layout.

Model Constraint 2 – Master layout dependence on content measure
Relaxing constraint 1, in this version of the processing model the decision of sizing, positioning and

layout structure is still responsibility of the master layout with the exception that of shrink-to-fit regions.

The master layout is allowed to query the content of nested layouts for their content measure.

Like in processing model 1, here the master layout still does not have any control over what parts of the

nested layout go into any particular region. This means that any assumptions about what content goes

into what region or how many regions will be full or empty of content are inappropriate.

In summary, the nested layout depends on the master layout for providing the size of its initial container

block. The master layout depends on the content measure of the redirected content (but not the

nested layout).

Features

 Performance – this model still allows asynchronous layout of master and nested layouts with the

exception of content measure queries made by the master layout.

 Security – hard to speculate, but since everything is inside of layout only I don’t foresee anything

major.

 Shrink-to-fit around nested layouts is possible (see content measure options below)

Limitations

 Empty or overflow regions are not controllable by the master layout simply because the regions

layout structure is predefined by the content of the master layout.

Model Constraint 3 – Master layout dependence on nested layout
Relaxing constraint 2, in this version of the processing model decisions of sizing and layout structure are

controlled by the nested layout. The master layout is still in control of positioning. This means that we

can assume knowledge of what nested contents would fall into what regions of the master document.

In summary, both layouts are dependent on their layout structure and sizing.

This is a pretty farfetched model that would require quite a bit of property extensions and changes to

both content and layout models. One of the big unknowns is identity of layout boxes – these are no

longer controllable by content nor will layout, thus some sort of mediator be required.

Features

 Shrink-to-fit around nested layouts is possible (driven by the nested layouts themselves)

 Empty space or overflow of nested layouts inside of regions is not an issue – layout is very

adaptive

Limitations

 Performance – this model requires synchronous layout between master and content layouts

 Complexity – the current HTML model is no longer valid – consider having a table without

knowing how many table cells there are.

 Security – speculatively much higher risks than the other two processing models

Shrink-to-fit around nested layouts
For the purposes of this document I am assuming that we are trying to move the CSS3 regions

processing model from constraint 1 to constraint 2.

Terminology
Different specs and user agent implementers tend to use different names/terms in order to explain the

same concepts related to shrink-to-fit sizing. CSS 2.1 defines shrink-to-fit sizing as a function of three

variables: available width, preferred minimum width and preferred width. The formula is as follows:

min(max(preferred minimum width, available width), preferred width)

Available width

Refers to the width of the containing block’s content box. This variable is computable during layout.

Preferred minimum width

The width of all flow content (note: absolutely positioned elements do not participate here) inside of a

given element if laid out without any available width constraints and all possible break opportunities are

taken. A simpler definition is – this is the longest non-breakable piece of flow content Synonyms –

content min width, intrinsic width Note: this sizing does not depend on layout and can be done

independently. Percentage values are usually ignored during this layout mode (currently undefined

scenario by the CSS 2.1 spec).

Preferred width

The width of all flow content inside of a given element if laid out without any available width constraints

and only explicit breaks are taken. Synonyms – content max width, intrinsic preferred width Note: this

sizing does not depend on layout and can be done independently. Percentage values are usually ignored

during this layout mode.

Content measure

Since computation of both preferred and preferred minimum width are independent of layout we can

say that these are measurements of content or content measure. (the term is internal to Microsoft). The

content measure has minimum (a.k.a preferred minimum width) and maximum (preferred width).

Height vs. Width
Unlike shrink-to-fit width, computing shrink-to-fit height is done by always taking the maximum extent

of the content. However, in order to compute the content height we first have to compute the used

width of the content box of the element and then layout the content with respect to it. This makes

height a dependent function of used width. This important difference (and dependency) between height

and width makes computation of used height (or the final content height) possible only during layout.

Fragmented content
The above definitions rely on the assumption that the entire content of an element is used during

content measuring. When fragmentation occurs (due to pagination, multicolumn or regions) this

http://www.w3.org/TR/CSS21/visudet.html#shrink-to-fit-float
http://www.w3.org/TR/CSS21/cascade.html#used-value
http://www.w3.org/TR/CSS21/cascade.html#used-value

assumption is no longer true and measuring of content becomes dependent on layout in the general

case.

Option 1 – single content measure
Same as in CSS 2.1, this option requires no changes to the current content measuring logic and would

mean the entire content is measured.

Pros

Easy to implement, good performance characteristic

Cons

If the preferred minimum width of the content is at the end all proceeding regions can end up with large

empty gaps.

Example

<style>

 .text { flow-into: text; }

 .region {

 flow-from: text;

 float: left; clear: left;

 border: 2px solid blue;

 }

 br { break-after: region; }

</style>

<body>

 <div id=”text”>

 Text

 ALongLongWordTakingSpace

 </div>

 <div class=”region”></div>

 <div class=”region”></div>

</body>

Expected result

Text

ALongLongWordTakingSpace

Option 2 – content measure respecting region breaks
This minor change to the definition of what content must be measured would make a big difference for

most practical cases that require STF regions. Instead of measuring all content and producing only one

content measure, we can measure content respecting region breaks, thus producing content measure

for each fragment (or piece of content spread among few fragments). In cases when the content doesn’t

fit a single region before the region break is reached, the two or more regions will be of the same width.

Pros

A large set of use cases will be covered.

Cons

More complex than option one in terms of building layout structures and computing content measures

Example

<style>

 .text { flow-into: text; }

 .region {

 flow-from: text;

 float: left; clear: left;

 border: 2px solid blue;

 }

 br { break-after: region; }

</style>

<body>

 <div id=”text”>

 Text

 ALongLongWordTakingSpace

 </div>

 <div class=”region”></div>

 <div class=”region”></div>

</body>

Expected result

Other practical use case is to have many elements inside a single content that are meant to spread

among a number of auto sized regions (

 etc.)

Text

ALongLongWordTakingSpace

Option 3 – content measure based on layout
This option will require multiple layout passes in order to determine where content will break. A naïve

algorithm could be:

1. layout using the available width – results in a content break based on the available height for

the region

2. measure the content up to the content break produced in step 1

3. layout again using the STF width computed using the content measure from step 2 – a new

content break is produced

4. back to step 1 starting from the output of step 3

Note that the content breaks produced in step 1 and step 3 are different – this is a proof that more or

less content will be measured in step 2 leading to similar problems as Option 1 above.

Pros

The content measure will be somewhat based on the content that goes into the regions.

Cons

Performance and complexity of layout – multiple additional passes are required. Additionally, the

content measure must be recomputed for each resizing of the region. Lastly, this is still an

approximation that can be easily wrong as illustrated below.

 This is a text that was

formatted inside of a

region for step one of

the algorithm above.

HoweverThereIsALongLongWordInsideOfIt.

available width

Steps 1 and 2

av
ai

la
b

le
 h

ei
gh

t This is a text that was formatted inside of

a region for step one of the algorithm

above.

HoweverThereIsALongLongWordInsideOfIt.

And now there’s space for more content…

available width

Result of step 3

av
ai

la
b

le
 h

ei
gh

t

Use Case Discussions

Use case 1 – balancing of content between regions
Assuming that we chose STF sizing option 2, consider the following use case.

<style>
 .text { flow-into: text; }
 br { break-after: region; }
 .page { display: table; width: 400px; height: 600px; }
 .column { display: table-cell; flow-from: text; }
</style>

<div class="text">
 The quick brown fox jumps over the lazy dog.
 The quick brown fox jumps over the lazy dog.
 The quick brown fox jumps over the lazy dog.
 The quick brown fox jumps over the lazy dog.
 The quick brown fox jumps over the lazy dog.

 The end.
</div>

<div class="page">
 <div id=r1 class="column"></div>
 <div id=r2 class="column"></div>
</div>

Problem statement

It would be easily solvable if table didn’t have constraints – we’d know r1 has content up to the break.
In table though (and in flexbox too) the actual space for region1 is not known until content measure is
calculated for all cells….

Response

The definitions of preferred minimum and preferred width require that content is laid out without any

dependency on containing layout (i.e. available width, height etc). Thus, when we layout the content of

the first region fragment all content will be measured (see no width or height limitation above)– all

content up to the first region break (again, we assume STF sizing option two). The remaining content for

the second fragment will be the one that falls between the first and second region breaks etc.

The above leads to a generalization of what content measures would correspond to what regions as

follows.

The number of content measures is defined by the number of region breaks plus one. Thus, assuming n

region breaks, the first n+1 regions will get the n+1 content measures of the content and the rest will get

the last one.

Further, this problem statement requires that the master layout has the knowledge of what content

goes into what region (or at lease has a better approximation of that). This would be possible if we

assume processing model with constraint 3. As already stated, this is beyond the scope of this proposal

(see the statement of STF sizing around nested layouts) as well as (to my understanding) the scope of

the current CSS3 regions focus).

Another option for solving this problem is to consider STF sizing option 3. There, I tried to explain

precisely that – an approximation of what content goes into what region.

